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The evaluation of matrix elements of two electron atoms is fundamental for the study of the
electronic properties of those systems. We add to this knowledge by presenting an explicit ex-
pression for the matrix elements of the inverse of the interelectronic distance of two-electron
atoms in any spatial dimensiab. The basis functions used are tlhedependent hydro-
genic wavefunctiongls?, 2p2, 342, 42,542, ..., 21y?, ..}, extending and including, in
this way, the results of the previous basis &€, 2p2, 342, 4£2}. The methodology used
does not employ Fourier integral transforms as in previous works but hypergeometric trans-
formation formulas.
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1. Introduction

Two-electron atoms are the simplest ones to show electron—electron interactions.
Matrix elements of the electron—electron distance are necessary for calculating ground
state properties of helium-like atoms. Because of the recent theoretical interest in the
properties of atoms in high dimensions [1], those evaluations have been extended to two-
electron atoms iD dimensions [2—4]. At the present time, there are formulas for matrix
elements involving théd-dependent hydrogenic wavefunctiofis?, 2p?, 3d?, 4f2} as
a basis set. While the electron—nucleus distances are given in terms of hydrogen-type ra-
dial wave functions, the angular dependence is given by Gegenbauer polynomials in the
cosine of the angle between the electron—nucleus distance vectors. The basis functions
are products of the preceeding two types of functions. In this note, the evaluation of the
matrix elements was restricted to spherical symmetry where orbital angular momentum
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guantum numbers for both electrons are equal; thus, the results apphdépendent
S-states.

In [2—4] the corresponding integrals were evaluated by Fourier integral methods.
In the present work, we present a general formula forheéependent matrix elements
formed from the general basis @2, 2p?, 3d%, 4f2,5¢2, ..., 21y?, ...}. In this way,
we have extended the evaluation to include any matrix element oDtdependent
S-state. The corresponding integrals are evaluated by hypergeometric function relations,
so use of Fourier transforms is not necessary.

Herrick and Stillinger calculated the binding energies of thedimensional
helium-like ions [3], and Herrick calculated excited states for theimensional he-
lium atom [2]. In both cases, a two-parameter Hylleras—Eckart—-Chandrasehkar function
and the Chandrasehkar modification of it with a Fourier transform scheme and a change
of coordinate system was used. Herrick found that as the dimension increases, the bind-
ing energy decreases [2]. The approach of Summerfield and Loeser is similar to that of
Herrick but extends the basis set matrix elements [4].

In the present work we obtain a general analytical expression for any basis set,
using hypergeometric expressions, extending, in this way, previous results.

2.  Thematrix e ements

To derive the close-form relation for thB-dependent matrix elemenrup|
1/r12ln’ ), Wherery, is the interelectronic distance, we start by writing our gener-
alized D-dependent two-electron wave function as

¥ = R(r1,72)0(0p)s(0), 1)

wheref)p is the angle between the electron—nucleus radandr,, D is the dimen-

sion, R(r1, rp) is the D-dependent two-electron radial wave functia®(6p) is the
D-dependent angular wave functions are) is the spin function. Thé-dependent
two-electron radial wave functiorR(ry, ;) will be given by a product of two
D-dependent one-electron radial wave functions, each one constructed from the three-
dimensional one-electron radial wave function [5]

n—Ii-1

_ o (Br/2) _ n+1 (Bryrrt
frslr) =€ 2. ¢ Dp( p )(ﬂ—l—p—l)!’ @)

and making the transformatioris— wup =1 + (1/2(D — 3) andnp — n = n +
(1/2)(D — 3). Thus, theD-dependent two-electron radial wave function will be given

by
G +up+D—-3\(n+up+D—-3
__B(r14r r(n —_ n —
R(ri,rp) =€ B(r1+r2)/2 2 § (=1)Ptp < MDp ) < MDp/ )
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The angular part of the wave function will be given by Gegenbauer polynomials

[np/2] t —2
e K (=D (@), (COSHp)) P
Cun = ; t(up — 21)! ' )

Substitution of equations (3) and (4) in equation (1) gives the unnormalizéependent
two-electron wave function as

n—up—1n—pup—1iup/2] .
W(ry, rp, Op) = € PU1H72/2 Z Z Z |:(—1)17+p/+t <n +up+D— )

p=0 p'=0 =0 p

(n+uD+D—3>
X p/

(Bro)" "X (Bra)" " "X (@), (2 COSOp )P
(n—pup—p—D!(n—pup—p =Dt (up —2t)!

}w), (5)

where n is the principal quantum numbey, is the secondary quantum number,

o =D/2—-1,8 = 2%%z/(n—1+«), « = (D — 1)/2 andz is the nuclear charge.

Let us note that this two-electron wave function includes electron correlation by means
of the terms indp.

The matrix elements will be given by

2 i} > _Jo Jo (112, 00)(A/r12) ¥ (1, 2, 0p) dPr1 dPrp ds2p (6)
r12 ? fooofooof\p(rla ra, QD)\I’(}"]_, FZ’QD)dDrlle’deD

<nMD

On interchanging sums and integrations and performing the necessary integrations
we obtain

<’1MD

n—pp—1§~n—pup-1 " =1wp=1 ' =1wp=1 ~[up/2] §[Kp/2)
, />_ Zp:O Zp/=0 Zp”:O Zp”:O t=0 t'=0 CEL

—\n /"(’D ’ / ’ / / ’
—un—1 —up—1 1=y =1 ' =y =1 up /2] —lp/2]
2 PRI DI ) DAl S DAr D D Sa Bl O Elf )
7
where
+p/+p"+p"” (n+up+D=3\ (n+up+D—3\ '+ p+D-3
_ (_1)P prpr ( Dp )( Dp/ )( L;” )
(n—pp—p—Dln—pp—p =Dl — pup — p” = 1!
(b D3) (gy2rpp' 2 gy -2 o

("= —p" = 1!
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(=) (@) i (@)~ (0T D272

E = 9
1" (up — 20\ () — 2t")! ’ ©)

o0 oo
_ _ _ . )
11=/ / /rlD 1r2D 1dr1dr2dQD|:e 5("1‘1”’2)’,{"""1 p—p r;""n p—p
0 0

1 ! ’
X —(coshp)HpTHp=2=2 } (10)
r12
o o0
I = / / / rP7 27 dry drp A2 [e‘é(’”’”ri’“/pp”zrg”/p/pwz
0 0
x (cos@D)“D“‘/DZIZ'}, (11)
B, B
=[=+=). 12
e=(5+5 (12

The integration over the spin coordinates does not appear in the above equations
because the one performed in the numerator cancels out the one performed in the de-
nominator.

We now describe the different steps to perform the integrations. Let us then begin
the evaluation of; with the integration over the angles

1 [T (cosfp)itH—2-2"ginP=2¢9
ol1 = — ( D) D /dQDL

r~ Jo (1+82—28 COS@D)]'/Z (13)
here the inverse of the interelectronic distance has been substituted by its expression
in terms of the interelectronic angle agrl, = 1/(1+ &2 — 2scoshp)¥/?, dQp =
sin®~26,, dvp, d2p_1, € is equal tor- /r- wherer_ andr. are the smaller and larger

of r1 andr,, respectively [6]. Using the trigonometric relation ées+ sir’ x = 1, the
hypergeometric function for the binomidl—x)~“ = 1 Fo(a; _; x) andsS, = fdQD_l =

27 P=D/2 )T (D — 1)/2), we can write equation (13) as follows:

1 [T (a)ysinP?tZg,
I1=—S dop, 14
N ;/0 k(1 + e2 — 2e cosOp)¥2 ~ ° (14)

wherea =t +t' — n/2 — '/2 and(a), is Pochhammer’s symbol. The integral of the
above equation can be evaluated using the formula 3.665.2 in [7] giving

1 & (@ (D+2k—1 1 13-D—-2 D+2k [r.\?
I =on"_ B ' A F s 7 7 - 5
a1 =57 2 k! < 2 2)2 1(2 2 2 <r>>

~ k=0
(15)
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where B(a, b) is the beta function defined bB(a,b) = TI'(a)T'(b)/T'(a + b) and
oFi(a, b; ¢; 7) is Gauss’s hypergeometric function. Substitution of the above result in
equation (10) gives

(a)k 7§(r1+r2) D+n+n'—p—p” 3 D+n+n'—p'—p" -3
I1=S§, § 1 r2

1 (D+2%-11
x —B(———., =
2 2

rs

13-D—-2 D+2 [r.\?
X2F1(2 2 > > ,<Z> )j|di’1dr2. (16)

The integration over; is

o0 1 13-D—-2 D+2k [r.\? o
r111:/ € Erl—zFl( i ; <r—> )VlD+ mepme 3dr1. an
0

rs 2’ 2 : 2 rs

The above integral separates into two integrals which upon evaluation gives

r2 1 13-D—-2% D+2 2 o
r1111:/ e F ; * (2 Py T
0 ra 2 2 2 ro

_Z (1/2);((3— D — 2k)/2); —(21+1)%. (D+n+n"—p—p"+2i-2)
2D+ 2072,

xy(D+n+n —p—p'+2i—2¢&r), (18)

and

o 1 13-D—2k D+2k (r2\*\ Dinin—p_p'-3
wl,= | eft,F : = mmmpTreg
vt /rz 12 1(2 2 2 (M) )rl "

_ i (1/2)1((3 - D— Zk)/z)irZi —(D+n+n'—p—p"—-2i-3)
- iN((D + 2k)/2); 2

i=0
xF(D+n+n/—p—p”—2i—3,51’2). (29)

Now substitution of equations (18) and (19) in equation (10) and integration of the
result overr, gives

= i W/21(B =D =20/2) _(pinia—p-pai-o

2D + 200/2),

00 .
> / e—§r2r2D+n+n —p-r —2!—4)/ (D +n+ n — p— p// +2i —2, $r2) di’z
0
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oy W2B=D =202,
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1
D+n+#—ﬁ—pw+ﬁ_L§) (21)
where

_F(2D+2n+2n/—p—p/_p//_p///_S) ’?

B (25)(2D+2n+2n’—pfp/,p//7[7///75) . ( )
Then,
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which upon several transformations in the hypergeometric functions, it becomes

00 /oo(l)j(2D+2n+2n/_p_p/_p//_p///_S)j 1]
L=5,%G> 7 >

k=0  j=0

X |:(D+n+n/—p—p”—2)_1(D+n—{—n/—p—p”—l);l
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5 ;

-|—(D-I—n—i-n/—p/—pm—2)71(D+n-I—n/—p/—pm—l)fl

j
<l 3—-D—-2 D+n+n—p —p" -2
X arl3

2’ 2 ’ 2 ’
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2 ’ 2
D+n+n/_p/_p///+j_l
2 9
D A N/ :
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2
where
. @i . (D+2%-11
G =G B , = ). 25
k! < 2 2) (25)

The evaluation of, is straightforward if we recall thatsel, = sin®~26, dd, dQ2p_1 in
the angular integration, giving

=S, i (@' ?r(D —1+2k)/2)(D+n+n' —p—p"—3)
k=0

kI (D + 2k)/2)

(D+n+n"—p —p”"—23!
%‘2D+2n+2n/7p7p/7p”7[7”/74 .

(26)

Table 1 presents some values of different matrix elements for several dimensions
and several different nuclear charges. In these particular cases, our results agree with
all previous results of [2—4]. On the other hand, the correspondence between the results
obtained with Fourier methods [2—4] and those obtained with hypergeometric relations,
as discussed here, allows us to establish interesting relations for sums of hypergeomet-
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Some values for different matrix elements using equation (7) for several dimensions and nuclear charges.
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Table 1

Matrix element Dimension z=1 z7=2 z=35 z = 7.81543
(1;2‘ s ’l¥2> D=3 5/8 125 21875 488464275
D=5 21/32 13125 2296875 5128875937
D=7 06703125 1340625 234609375 538780422
D=9 0678292 1356584821 374023438 01146855
D=21 0694595 1389190908 213108409 528562151
(2p2 A ’2p2> D=3 111/512 043359375 7587890625  B94360801
D=5 1001/2880 (6951388889  D16493056 716404663
D=7 042489624 (8497924805 187136841 320746823
D=9 0475247396 (0504947917 63365885 14262755
D=21 0595634946 1191269891 8472231 655143223
<3d2 < ‘342> D=3 01074869797 (214974 03762044427  (BA00569616
D=5 02159685407 @319370815 (¥558898920 587887012
D=7 02049549212 (5899008424  D32342224  B0519954
D=9 03531169442  (F062338884  D35909305 759760759
D=21 05171795147 D34359029 1810128301 041980294

ric functions, as the one obtained through the evaluation of t&1/r1,|1s%) matrix
element

o]

Z (1/2)«((3— D) /2)x
(14 D/2)ik!
_ '(D+1)/2I'(D +1/2)I' (D) 401
~ I(D/2(D-1I'(2D —1)

2F1(1,2D —1; D + 2k + 1;1/2)
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